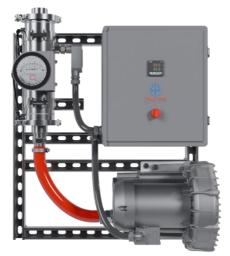


All-In-One Heated Ozone Destruct System

Description of Operation

Ozone gas can be used to disinfect a water supply when it is injected into the side stream. However, the ozone gas must be off-gassed and excess ozone must be catalyzed back into oxygen. The destruct reactor must maintain a high temperature to keep water vapor from fouling the media, reducing its lifespan.


In some cases, a blower is used to maintain a constant flow rate through the destruct.

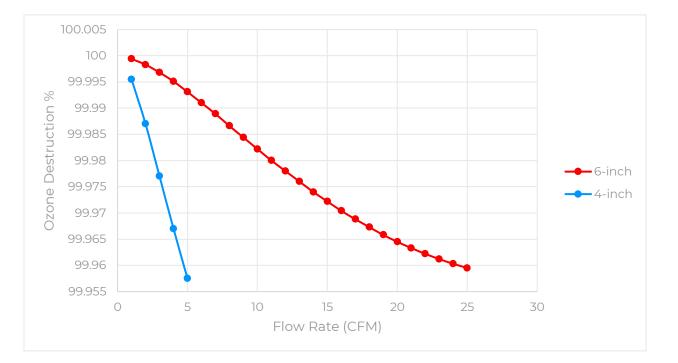
The **Telchine Ozone Destruct System** includes both an oversized destruct reactor, and an internal heater system, which automatically regulates the bed temperature. Blower models include a regenerative blower. All

FEATURES

components.

- 316 Stainless-Steel Construction with PTFE seals provide excellent chemical compatibility with ozone gas.
- Efficiently destructs ozone to 99.9%, even in high concentrations.
- Temperature regulated heating system maintains optimal media temperature, even for wet media.
- Blower equipped systems maintain a consistent bed flow rate, which extends media life and efficiency.
- Stainless-Steel strut channel frame allows for flexible installation options.
- Outlet connection can be open or routed to flow outside.

Note: H_2S (Hydrogen Sulfide) & Chlorine will destroy the catalyst media and reduce destruct effectiveness. Refer to the *operations, installation, and maintenance guide* or contact Telchine for proper implementation and integration of the destruct system in these environments.


units are powered from a single point and include circuit breaker protection for individual

SPECIFICATIONS

Config. No	PR- 004- 120V	PR- 004- 240V	BL- 004- 120V	BL- 004- 240V	PR- 006- 120V	PR- 006- 240V	BL- 006- 120V	BL- 006- 240V
Flow Rate	0-5 CFM @ 10%		0-5 CFM @ 10%		0-25 CFM @ 10%		0-25 CFM @ 10%	
Voltage	120V	240V	120V	240V	120V	240V	120V	240V
FLA	4.3 A	2.2 A	10.3 A	5.2 A	4.3 A	2.2 A	10.3 A	5.2 A
Body Size	4 in NPS				6 NPS			
Inlet Size	½ NPT 3/8" OD Tube Compression Fitting		1-1/2 NPT		½ NPT		3 in NPT x 1-1/2 NPT	
Outlet Size								

Flow Rate Chart

Chemical Resistance Compatibility for Materials

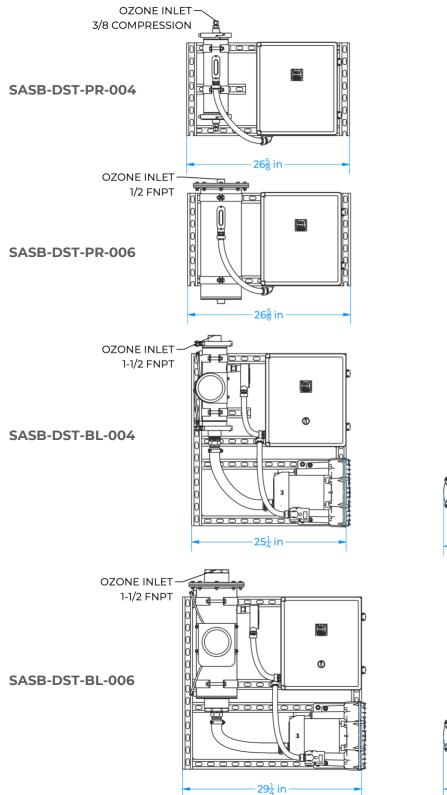
	Ozone Compatibility		
Stainless Steel AISI 316	All hardware, valve float.	A – Excellent	
PTFE	PTFE	A – Excellent	

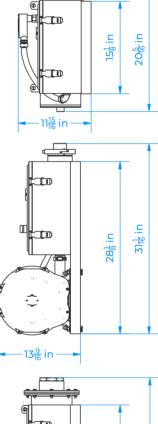
Material Compatibility established by Cole-Parmer® Chemical compatibility database.

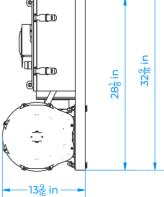
禺

20<mark>16</mark> in

15₈ in


D


10 $-9\frac{1}{8}$ in -


Ē

SASB-DST-WALMT

Dimensions

